TAXANES FOR NEoadjuvant treatment of early breast cancer: A systematic review

MAY 2007

Prepared by National Breast and Ovarian Cancer Centre

Funded by the Australian Government
Department of Health and Ageing
Taxanes for neoadjuvant treatment of early breast cancer: a systematic review
was prepared and produced by:
National Breast and Ovarian Cancer Centre (NBOCC)
Locked Bag 3 Strawberry Hills NSW 2012 Australia
Suite 103, 355 Crown Street, Surry Hills, NSW, 2010
Telephone: +61 2 9357 9400 Fax: +61 2 9357 9477
Website: www.nbocc.org.au
Email: directorate@nbocc.org.au

ISBN Online: 978-1-74127-125-6
© National Breast and Ovarian Cancer Centre 2008

This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any
process without prior written permission from National Breast and Ovarian Cancer Centre. Requests and enquiries concerning
reproduction and rights should be addressed to the Public Affairs Manager, National Breast and Ovarian Cancer Centre,
Locked Bag 3 Strawberry Hills NSW 2012 Australia.

Recommended citation
National Breast and Ovarian Cancer Centre, Surry Hills, NSW, 2008.

Copies of this report can be downloaded from the National Breast and Ovarian Cancer Centre website: www.nbocc.org.au

Disclaimer
National Breast and Ovarian Cancer Centre does not accept any liability for any injury, loss or damage incurred by use of or
reliance on the information. National Breast and Ovarian Cancer Centre develops material based on the best available
evidence, however it cannot guarantee and assumes no legal liability or responsibility for the currency or completeness of the
information.
National Breast and Ovarian Cancer Centre is funded by the Australian Government Department of Health and Ageing.
ACKNOWLEDGEMENTS

National Breast and Ovarian Cancer Centre gratefully acknowledge the support of all the individuals and groups who contributed to the development of this review.

Working Group – Taxanes Subgroup
This review was developed with input from a multidisciplinary Working Group:
Dr Craig Lewis (Chair)
Dr Alison Davis
Dr Tom Ferguson
Dr James French
Ms Judy Iasiello
Ms Elisabeth Kochman
Dr Anna Nowak

National Breast and Ovarian Cancer Centre Staff
The following people were involved in the development of this review:
Ms Rosemary Vagg (Senior Project Officer - Research)
Ms Katrina Anderson
Dr Karen Luxford
Ms Alison Pearce
Ms Jess Singleton
Ms Heidi Wilcoxon

* In February 2008, National Breast Cancer Centre incorporating the Ovarian Cancer Program (NBCC) changed its name to National Breast and Ovarian Cancer Centre (NBOCC)
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of tables</td>
<td>5</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>6</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>8</td>
</tr>
<tr>
<td>Background</td>
<td>11</td>
</tr>
<tr>
<td>Methods</td>
<td>12</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>12</td>
</tr>
<tr>
<td>Literature search</td>
<td>13</td>
</tr>
<tr>
<td>Quality assessment</td>
<td>14</td>
</tr>
<tr>
<td>Data extraction</td>
<td>14</td>
</tr>
<tr>
<td>Results</td>
<td>16</td>
</tr>
<tr>
<td>International guidelines</td>
<td>16</td>
</tr>
<tr>
<td>Included systematic reviews</td>
<td>16</td>
</tr>
<tr>
<td>Included studies</td>
<td>19</td>
</tr>
<tr>
<td>- Description of included studies</td>
<td>20</td>
</tr>
<tr>
<td>- Outcomes</td>
<td>23</td>
</tr>
<tr>
<td>Ongoing studies</td>
<td>28</td>
</tr>
<tr>
<td>Conclusions</td>
<td>30</td>
</tr>
<tr>
<td>References</td>
<td>31</td>
</tr>
<tr>
<td>Appendices</td>
<td>33</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Characteristics of included systematic reviews
Table 2. Characteristics of included studies
Table 3. Relapses and deaths at most recent report
Table 4. Overview of response rates (clinical and pathological)
Table 5. Breakdown of clinical response rates
Table 6. Rates of breast conserving therapy
Table 7. Reported toxicity data
Table 8. Ongoing studies investigating taxane-containing neoadjuvant regimens
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Doxorubicin and Cyclophosphamide</td>
</tr>
<tr>
<td>ACCOG</td>
<td>Anglo-Celtic Cooperative Oncology Group</td>
</tr>
<tr>
<td>ASCO</td>
<td>American Society of Clinical Oncology</td>
</tr>
<tr>
<td>BCT</td>
<td>Breast Conserving Therapy</td>
</tr>
<tr>
<td>CCO</td>
<td>Cancer Care Ontario</td>
</tr>
<tr>
<td>cCR</td>
<td>Clinical Complete Response</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CVAPr</td>
<td>Cyclophosphamide, Vincristine, Doxorubicin and Prednisolone</td>
</tr>
<tr>
<td>cPOS</td>
<td>Positive Clinical Response</td>
</tr>
<tr>
<td>DFS</td>
<td>Disease Free Survival</td>
</tr>
<tr>
<td>EBC</td>
<td>Early Breast Cancer</td>
</tr>
<tr>
<td>FAC</td>
<td>Fluorouracil, Doxorubicin, and Cyclophosphamide</td>
</tr>
<tr>
<td>FEC</td>
<td>Fluorouracil, Epirubicin and Cyclophosphamide</td>
</tr>
<tr>
<td>HR</td>
<td>Hazard Ratio</td>
</tr>
<tr>
<td>LABC</td>
<td>Locally Advanced Breast Cancer</td>
</tr>
<tr>
<td>MDACC</td>
<td>MD Anderson Cancer Centre</td>
</tr>
<tr>
<td>MERGE</td>
<td>Method for Evaluating Research Guideline Evidence</td>
</tr>
<tr>
<td>NBCC</td>
<td>National Breast Cancer Centre</td>
</tr>
<tr>
<td>NBOCC</td>
<td>National Breast and Ovarian Cancer Centre</td>
</tr>
<tr>
<td>NSABP</td>
<td>National Surgical Adjuvant Breast and Bowel Project</td>
</tr>
<tr>
<td>OS</td>
<td>Overall Survival</td>
</tr>
<tr>
<td>pCR</td>
<td>Pathological Complete Response</td>
</tr>
<tr>
<td>PE</td>
<td>Paclitaxel and Epirubicin</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized Controlled Trial</td>
</tr>
<tr>
<td>RR</td>
<td>Risk Ratio</td>
</tr>
<tr>
<td>SABCS</td>
<td>San Antonio Breast Cancer Symposium</td>
</tr>
<tr>
<td>Tmx</td>
<td>Tamoxifen</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

Taxanes are a class of chemotherapy compounds that includes paclitaxel, docetaxel and abraxane. As antimicrotubule agents, taxanes inhibit the normal process of reorganisation of the microtubule network essential for cellular function, which leads to a disruption of mitosis (cell division). Taxanes can be used as part of adjuvant or neoadjuvant chemotherapy regimens to treat early (operable) breast cancer.

The aim of this systematic review was to determine the effectiveness of taxane-containing chemotherapy regimens, compared to non-taxane-containing chemotherapy regimens. This review assessed taxanes in a neoadjuvant chemotherapy setting, while a second review (conducted by Cochrane1) examined taxanes in an adjuvant chemotherapy setting. This review examined three types of regimens:

- regimen A plus taxane vs. regimen A
- regimen A plus taxane vs. regimen B
- regimen A with taxane substituted for one or more drugs vs. regimen A.

The review included randomised controlled trials (RCTs) published up to March 2007 in women with early (operable) breast cancer. The search retrieved a total of 427 references from electronic databases, conference sites and clinical trial and guideline sites. After rigorous methods of inclusion and exclusion of articles, 20 articles were eligible for the review covering three systematic reviews and eight RCTs.

RESULTS

Three studies examined paclitaxel,2-4 while the remaining five trials examined the use of docetaxel.5-9 Six of the studies included an anthracycline (doxorubicin or epirubicin) in the taxane and non-taxane arm. One study investigated the single use of paclitaxel compared to combination chemotherapy.2 Another study compared the use of docetaxel and capecitabine with doxorubicin and cyclophosphamide.8

All trials included were randomised controlled trials. However, the method of allocation and/or allocation concealment to study arms was often not reported. The baseline patient characteristics were well balanced between study arms for all trials. Many trials stratified study
arms by age, size of tumour and nodal status. It is unlikely that the trials included are
influenced by bias or confounding factors.

Overall Survival
Overall survival (OS) was reported in four of the trials.3, 5, 6, 10 Three of the four trials reported
that OS did not differ significantly between the two treatment groups.3, 5, 6 The remaining trial
reported that OS for the taxane group was 93\% while the control group was 78\% (p=0.04).10
However, while this trial reported an overall survival benefit for the taxane group the trial was
quite small.

Disease-free survival
Disease-free survival (DFS) was reported in three of the trials.2, 3, 5 The overall differences in
the trials between the taxane group and control group were not statistically significant.

Relapse-free survival
Four of the trials reported on relapse-free survival.2, 3, 5, 6 Trends have suggested that taxanes
may be associated with improved relapse-free survival. However, in each trial this was not
statistically significant.

Response rates
Clinical response
Taxane-containing regimens achieved higher clinical complete response rates. However, these
differences between the taxane and control groups were not always significant.2-4, 8-10

Pathological response
Pathological complete response rates were higher in the taxane-containing arms in comparison
to the control arms; however, only one trial11 reported that the higher pathological complete
response rates in the taxane arm were statistically significant.

Breast Conserving Therapy
Five of the trials reported on the rates of breast conserving therapy (BCT).2, 3, 6, 8, 11 Three of
the trials2, 6, 11 reported similar rates of BCT among the taxanes and control groups. The other
two trials3, 8 reported higher rates of BCT in the taxane arms; however, statistical significance was not reported.

Toxicity/Adverse events

Toxicity data was reported in six of the trials;2, 3, 5, 6, 8, 9, 11 however, many reported small numbers of toxic events, so it is difficult to clearly identify differences in the toxicity profiles of taxane containing regimens compared to control regimens.

The most commonly, and consistently, reported outcome was febrile neutropenia, with four trials reporting higher rates in the taxane-containing arms compared to the control arms.2, 3, 5, 6, 11

CONCLUSION

Overall at this time there is no overall or disease-free survival benefit of taxane-containing regimens compared with standard neoadjuvant chemotherapy for early breast cancer. While there appears to be a trend towards a benefit on relapse-free survival among taxane-containing regimens; however, further data is needed to determine if this is statistically significant. Taxane regimens also seem to achieve higher clinical and pathological response rates in comparison to non-taxane regimens; however, the reported differences were only statistically significant in one trial.
BACKGROUND

In 2003, the National Breast Cancer Centre (NBCC) commissioned a systematic review on the role of taxanes in early and locally advanced breast cancer (LABC).12

The review concluded that while there was evidence to suggest that taxane-containing regimens were a reasonable option for use in both the neoadjuvant and adjuvant setting, this information was limited and longer follow-up was needed to clarify the role of taxanes in the treatment of early and locally advanced breast cancer.

Taxanes continue to be used as part of adjuvant or neoadjuvant chemotherapy regimens to treat early (operable) breast cancer. The aim of this new review is to summarise the current literature and assess the effectiveness of neoadjuvant use of taxanes (docetaxel or paclitaxel) for the management of early (operable) breast cancer. The question of adjuvant use of taxanes for the management of early (operable) breast cancer is reported elsewhere.1
METHODS

The objective of this review is to compare taxane-containing neoadjuvant chemotherapy regimens with non-taxane-containing neoadjuvant regimens for the management of women with early (operable) breast cancer. Regimens include:

- Regimen A plus taxane vs. Regimen A
- Regimen A plus taxane vs. Regimen B
- Regimen A with taxane substituted for one or more drugs vs. Regimen A.

INCLUSION CRITERIA

Participants
Women with early (operable) breast cancer, including stage I, II, IIIA or TNM classification T1-3, N0-2, M0, receiving neoadjuvant chemotherapy. Studies including patients with locally advanced or inflammatory disease were also included if the majority of patients were considered operable or if results were reported separately by stage of disease.

Intervention
Any neoadjuvant chemotherapy regimen containing a taxane. Taxanes include paclitaxel and docetaxel.

Comparison
Any neoadjuvant chemotherapy regimen not containing a taxane.
- Endocrine therapy may be used if the same treatment has been given to all groups.

Outcomes
- Overall survival (OS)
- Disease-free survival (DFS)
- Relapse-free survival
- Response rates (clinical and pathological)
- Breast conserving therapy (BCT)
- Toxicity/adverse events
- Quality of life.
A systematic literature search was conducted to identify phase III RCTs which addressed the inclusion criteria. The search was conducted over several databases/sources (see Appendix 1), including:

- Medline
- EMBASE
- PubMed
- EBM reviews
- CINAHL
- Cochrane Library, Issue 1 Jan 2007.

The search strategy used combined key terms which described breast cancer, neoadjuvant chemotherapy, taxanes and randomised trials (see Appendix 2). The literature search covered the period up to March 2007. Publication date limitations were not imposed. The search was limited to trials conducted in humans and published in English.

In addition to the above databases/sources, conference sites for the San Antonio Breast Cancer Symposium (SABCS) and the American Society of Clinical Oncology (ASCO) were also searched for relevant abstracts.

Reference lists of included papers were also searched and additional relevant papers identified were sourced. A list of the guidelines, clinical trials and health technology assessment websites searched can be found in Appendix 4. Additional papers identified from personal files and the reference lists of included papers were also sourced.

After removal of duplicate citations and the addition of further citations sourced, a total of 427 citations remained. The titles and abstracts of these citations were assessed by two independent reviewers to determine eligibility for the current review based on the criteria detailed above. Ineligible studies were classified using the exclusion criteria below. For citations were insufficient detail for inclusion/exclusion was provided in the abstract, the full paper was retrieved and assessed. After application of inclusion/exclusion criteria, 54 citations remained for full text assessment (see Appendix 3).

Exclusion criteria

- Not an original clinical study – publications not reporting the findings of original clinical studies including non-systematic reviews, editorials, opinion pieces and letters.
• Wrong population – studies conducted in a population other than women with operable breast cancer.
• Wrong intervention – studies not investigating the effect of taxanes as neoadjuvant therapy.
• Wrong design – not a RCT.
• Not a phase III trial.
• Not published in the English language.

The full text of the remaining 54 citations were retrieved and assessed to identify which met the inclusion criteria for the review. After full text assessment 20 citations were identified as eligible for the current review and the remaining 34 citations were classified as ineligible. Of the included citations, three systematic reviews and eight trials were identified (some trials were reported by multiple citations).

QUALITY ASSESSMENT
The three systematic reviews and eight trials included in the review were assessed for quality. This involved assessment of specific aspects of the studies according to the NSW Health Method for Evaluating Research Guideline Evidence (MERGE) tool. Aspects of systematic reviews which were assessed included the adequacy of the search strategy used, whether study quality assessment was performed and whether a point estimate was calculated. Aspects of the studies which were assessed included randomisation and allocation concealment methods, consideration of benefits and harms, and how well potential bias was minimised.

Two of the three systematic reviews provided enough information to determine that the methods used were of sound methodological quality. One systematic review was reported only in abstract form so there was not enough information to perform quality assessment.

All trials included were randomised controlled trials; however, the method of allocation and/or allocation concealment to study arms was often not reported. The baseline patient characteristics were well balanced between study arms for all trials. Many trials stratified study arms by age, size of tumour and nodal status. It is unlikely that the trials included are influenced by bias or confounding factors.

DATA EXTRACTION
Data extraction was performed independently by two reviewers and then checked by a third reviewer to ensure accuracy/consistency. Any discrepancies were discussed by all three reviewers until a consensus decision was made. Where multiple citations existed for one trial, data was extracted from the latest available publication. However, if additional information of
interest was reported in a previous publication this was also included. Descriptive data extracted from the studies included characteristics such as patient population, taxane used, chemotherapy regimen and primary end points. Outcome data extracted from the studies included OS, DFS, relapse-free survival, response rates (including both clinical and pathological), and BCT. Toxicity data was extracted including aspects such as neutropenia, vomiting, nausea, stomatitis and diarrhoea.
RESULTS

INTERNATIONAL GUIDELINES

In addition to the literature search, various international guidelines websites were searched to identify existing guidelines on the topic of neoadjuvant taxanes in early breast cancer and one guideline was identified.

Cancer Care Ontario13

The program in evidence-based care for Cancer Care Ontario (CCO) in Canada released a practice guideline report in December 2004: The Role of Taxanes in Neoadjuvant Chemotherapy for Women with Non-metastatic Breast Cancer13

Recommendations from this guideline include that a neoadjuvant taxane should be offered when neoadjuvant 5-fluorouracil, doxorubicin, and cyclophosphamide (FAC) or doxorubicin and cyclophosphamide (AC) chemotherapy regimens are being considered for treatment of non-metastatic breast cancer. The following regimens are recommended:

- Paclitaxel (80mg/m2), administered weekly for 12 weeks prior to the anthracycline-based regimen.
- Docetaxel (100mg/m2), administered every three weeks for four cycles following the anthracycline-based regimen.

The guidelines state that, at the time of publication, there was no evidence to suggest that one taxane is superior to the other in the neoadjuvant setting.

SYSTEMATIC REVIEWS

Three systematic reviews were identified as eligible for this review. Two reviews were reported as full papers and one was reported only as an abstract. One of the systematic reviews is a publication based on the original NBCC review on taxanes.12 The paper by Trudeau et al14 resulted from the systematic review conducted by the Cancer Care Ontario Program (Canada) to support their guidelines13 on the neoadjuvant use of taxanes in early breast cancer. The third review by Felici et al15 was presented at the 2005 ASCO meeting and is available as an abstract only.

Characteristics of these reviews are shown in Table 1. Each review will be considered in turn.
Table 1. Characteristics of included systematic reviews

<table>
<thead>
<tr>
<th>Review Citation</th>
<th>Population</th>
<th>Research Question</th>
<th>Outcomes</th>
<th>Included Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nowak et al., 2004</td>
<td>• Early breast cancer, locally</td>
<td>Neoadjuvant treatment with taxane vs. neoadjuvant treatment without taxane</td>
<td>pCR, cCR, RFS, OS</td>
<td>5 trials</td>
</tr>
<tr>
<td></td>
<td>advanced</td>
<td></td>
<td></td>
<td>3 full papers</td>
</tr>
<tr>
<td></td>
<td>• Stage I-II, I-IIIA, or IIIA-IIIB</td>
<td></td>
<td></td>
<td>2 abstracts</td>
</tr>
<tr>
<td></td>
<td>• T1-3 N0-1 M0 or T3-4 TxN2 M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trudeau et al., 2005</td>
<td>• Non-metastatic breast cancer</td>
<td>Neoadjuvant taxane vs. other neoadjuvant regimen</td>
<td>Efficacy, toxicity,</td>
<td>18 trials</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>response rates</td>
<td></td>
</tr>
<tr>
<td>Felici et al., 2005</td>
<td>Not reported</td>
<td>Neoadjuvant treatment with taxane vs. neoadjuvant treatment without taxane</td>
<td>Response rates, toxicity</td>
<td>10 trials</td>
</tr>
</tbody>
</table>

Note: cCR=clinical complete response, OS=overall survival, pCR=pathologically complete response rate, RFS=relapse free survival

NBCC Review¹²

The paper by Nowak and colleagues was based on a NBCC review on the adjuvant and neoadjuvant use of taxanes for early and locally advanced breast cancer.¹³ The literature search was conducted in 2003 on the Cochrane specialised breast cancer register. Abstracts from the ASCO and SABCS 2003 conference proceedings were also included. Only the neoadjuvant analyses will be discussed here.

Five neoadjuvant trials were included in this review, three reported as full papers, two reported as abstracts only. The review reports on information of the included trials separately. Pathological and clinical response rates for included trials were discussed. At the time of publication of this review, none of the trials had reported on survival.

The authors concluded that if neoadjuvant therapy is to be used that combination regimens including a taxane are active and are a reasonable option. It was noted that the results presented in the review were “immature and do not yet warrant the adoption of taxanes as best standard practice”.

Cancer Care Ontario review¹⁴

The paper by Trudeau et al.¹⁴ resulted from an evidence-based review conducted to support the Cancer Care Ontario guidelines on the neoadjuvant use of taxanes for early breast cancer.
published in 2004. The literature search for this review was conducted in December 2004. Electronic databases Medline and EMBASE were searched for meta-analyses, RCTs and practice guidelines linking key terms for breast cancer, neoadjuvant chemotherapy and taxanes. ASCO and SABCS conference proceedings were also searched. Eighteen RCTs were considered eligible; however, this evidence review included phase II studies which were excluded from our current review. Trials investigating paclitaxel or docetaxel were reported separately. The eligible trials were categorised into three groups:

- neoadjuvant taxane regimens vs. other neoadjuvant regimens
- neoadjuvant taxane regimens vs. adjuvant taxane regimens
- taxane dose and/or schedule comparisons.

Ten trials were considered in the first group, four of which were phase II trials. Reported outcomes included rates of clinical response, pathologic response, breast conservation, DFS and OS. The review concluded that some women with non-metastatic breast cancer could benefit from the use of neoadjuvant taxane therapy, in sequence with an anthracycline regimen, due to maximising local response rates.

One trial was identified regarding the question of neoadjuvant vs. adjuvant use of taxanes: the ECTO trial. As only preliminary information was available for this trial, the authors concluded that there was insufficient evidence to suggest the use of taxanes in the neoadjuvant setting is superior to taxanes in the adjuvant setting.

Seven trials were reported which investigated various taxane doses or schedule comparisons. Trials addressing sequential vs. combination therapy/longer vs. shorter chemotherapy, and weekly vs. three-weekly schedules were reported. The authors reported that:

- no conclusion could be made regarding the superiority of sequential vs. combination anthracycline-taxane regimens
- that there is evidence to suggest that six cycles of taxane therapy (in sequence with an anthracycline) are superior to combination therapy for fewer cycles
- while data regarding weekly vs. three-weekly regimens are immature, paclitaxel may be administered weekly; however, weekly docetaxel has not been shown to be superior to the three-weekly regimen.

Italian review

A pooled analysis by Felici et al on taxanes as neoadjuvant chemotherapy for breast cancer was presented at the ASCO meeting in 2005, and information for this review was available as an abstract only. Although there is no indication on the patient population (other than breast cancer), it is likely that RCTs included data from patients with locally advanced and/or inflammatory breast cancer. The review includes 10 RCTs which were published or presented between 1998 and
2004, including a total of 3120 patients. The review concluded that neoadjuvant taxanes increase pathological complete response (RR: 1.60; 95% CI: 1.35, 1.90; p<0.001) and the clinical complete response (RR: 1.48; 95% CI: 1.34, 1.62; p<0.001) based on information from nine trials. Based on the results from six trials, no difference was found for the rate of conservative surgery (RR: 1.05; 95% CI: 0.96, 1.14; p=0.24). No difference was seen regarding the axilla nodal complete response (RR: 1.06; 95% CI: 0.98, 1.15; p=0.13), based on the results from five trials. Three trials reported on grade III or IV febrile neutropenia which was increased in patients given taxanes (RR: 2.86; 95% CI: 2.25, 3.64; p<0.001).

INCLUDED STUDIES

Eight RCTs were identified as eligible for this review. Six of the trials are available as full text publications; however, two of the trials have only been published in abstract form.

Many of the papers identified have been included in the previous systematic reviews. The current review provides additional information as the latest publication from the NSABP B-27 trial and information from two additional trials, Dieras 2004 and Learn 2004, have been included.

Two studies which included locally advanced and/or inflammatory breast cancer patients were included in the review as the majority of patients enrolled in the trial were considered operable (Aberdeen and ACCOG trials).

Three studies investigated paclitaxel the other five investigated docetaxel. Six studies used an anthracycline (doxorubicin or epirubicin) in both the taxane and non-taxane arms. One study investigated the single use of paclitaxel compared to combination chemotherapy. One study compared the use of docetaxel and capecitabine with doxorubicin and cyclophosphamide. Characteristics of the included studies are summarised in Table 2.
Table 2. Characteristics of included studies

<table>
<thead>
<tr>
<th>Study Citation</th>
<th>Country</th>
<th>Population</th>
<th>Taxane arm</th>
<th>Control arm</th>
<th>Outcomes</th>
</tr>
</thead>
</table>
| NSABP B-27, Bear 2006^{5, 2003}¹¹ | US | • N=1605
• clinical stage T1C-3 N0-1 M0 or T1-3 N1 M0 | AC + D | AC | DFS, OS |
| MDACC, Buzdar 1999⁹, 1997¹⁶ | US | • N=174
• age: 22-68 yrs
• T1-3 N0-1 M0, invasive but non-inflammatory | P | FAC | DFS |
| Dieras 2004³ | Europe | • N=200
• age: 26-66 yrs
• 65% hormone receptor positive
• nodal status: T2: 63%, T3: 38%, N0: 42%, N1: 58%, M0: 100%
• SBR grade: I: 9.5%, II: 43%, III: 7.5% | AP | AC | pCR, cCR |
| Learn 2005⁷ | US | • N=144
• age: 27-73 yrs
• nodal status: 38.7% positive, 61.3% negative
• pre-treatment AJCC stages: I = 23.6%, II: 39.6%, IIIB: 30.6%, IIIA: 6.3% | AC/Tmx + D | AC/Tmx | cPOS, clinical responses |
| Malamos 1998⁴ | Greece | • N=35
• age: 35-70 yrs
• operable breast cancer | PE | FEC | pCR and cCR |
| Lee 2004⁹ | Korea | • N=78
• age: 21-66 yrs
• stage II/III breast cancer | DX | AC | Efficacy and toxicity |
| ACCOG, Evans 2005⁶ | UK | • N=363
• age: 25-74yrs
• large primary (≥3cm) tumours, inflammatory or LABC. 77% considered operable by mastectomy, 15% inflammatory, 8% inoperable LABC | AD | AC | pCR |
| Aberdeen⁸,¹⁰ | UK | • N=162
• age: 28-75yrs
• large (≥3cm) or locally advanced (T3-4 or N2) | CVAPr (4 cycles) → D (4 cycles) | CVAPr (8 cycles) | pCR |

Not: A=docetaxel, B=paclitaxel, C=cyclophosphamide, D=doxorubicin, E=epirubicin, F=fluorouracil, P=prednisolone, Tmx=tamoxifen, V=vincristine, X=capecitabine

Description of included studies

NSABP B-27 trial^{5, 11}

This US study conducted by the National Surgical Adjuvant Breast and Bowel Project (NSABP) is the largest trial on the neoadjuvant use of taxanes in women with operable breast cancer.
reported in this review. The study recruited 2411 women with information available for 2404 patients at the median follow-up of 77.9 months.

This study contained three arms:

i) four cycles of preoperative anthracycline (60mg/m2) and cyclophosphamide (600mg/m2) every three weeks (n=802)

ii) preoperative AC as in group i) followed by four cycles of docetaxel (100mg/m2) every three weeks followed by surgery (n=803)

iii) preoperative AC as in group i) followed by surgery then four cycles of postoperative docetaxel (100mg/m2) (n=799).

Tamoxifen (20mg/d for 5 years) was initiated on the first day of chemotherapy regardless of hormone receptor status. For this review the comparison of arms i) and ii) are of interest, however toxicity data is reported with combined results from both taxane arms (arms ii) + iii)) compared to the control group (arm i)). This study investigated overall and disease-free survival as well as response rates.

MD Anderson Cancer Centre (MDACC)2,16

This study reported by Buzdar et al2,16 investigated the single agent use of a taxane (paclitaxel, 250mg/m2) compared with combination chemotherapy (flurouracil 500mg/m2, doxorubicin 50mg/m2, cyclophosphamide 500mg/m2 (FAC)). One hundred and seventy four patients, enrolled between May 1994 and June 1998, were randomised to either paclitaxel (n=87) or to FAC (n=87) at three-weekly intervals. Each patient was given four cycles of neoadjuvant chemotherapy. Response rates, local therapy and toxicity were reported.

Dieras 20043

Two hundred patients with T2-3, N0-1, M0 disease were randomly assigned in a 2:1 ratio to neoadjuvant doxorubicin (60mg/m2) plus paclitaxel (200mg/m2) (n=133) or neoadjuvant doxorubicin (60mg/m2) plus cyclophosphamide (600mg/m2) (n=67). The primary outcome of interest was pathological complete response (pCR), DFS and toxicity were also reported. The investigators planned to assess whether pCR was an independent predictor of DFS and OS.

Learn 20057

While the primary study question being investigated in this paper was not relevant for this review (to evaluate the association of HER2/neu expression and response to neoadjuvant chemotherapy), this paper has been included for assessment as some information regarding response rates is provided. One hundred and forty-four patients were enrolled, ninety-seven patients were given four cycles of neoadjuvant doxorubicin (60mg/m2), cyclophosphamide (600mg/m2) and tamoxifen (60mg/m2) (AC/Tmx), and 47 were given the same neoadjuvant AC/Tmx regimen plus docetaxel (100mg/m2). Clinical positive responses (complete + partial
response) were reported as well as complete pathologic response. Rates of a positive clinical response (cPOS) were reported by cancer stage (differences in rates were accounted for mainly by patients with stage IIB and IIIA disease).

Malamos 1998
This Greek study reported by Malamos et al has been published as an abstract only. It is a small trial of only 35 patients who were randomised to either paclitaxel (200mg/m²) and epirubicin (75mg/m²) (PE) or fluorouracil (600mg/m²) and epirubicin (75mg/m²) and cyclophosphamide (600mg/m²) (FEC). The chemotherapy regimens were given every three weeks.

Lee 2004
An interim analysis for a Korean study has been reported by Lee et al in an abstract, presented at ASCO in 2004. Seventy-eight patients with stage II or III breast cancer were enrolled between August 2002 and November 2003. Patients were randomised to either four cycles of neoadjuvant doxorubicin (60mg/m²) and cyclophosphamide (600mg/m²) (AC) or four cycles of docetaxel (75mg/m²) and capecitabine (1000mg/m²) (TX). The chemotherapy regimens were administered every three weeks. Results for clinical and pathological response rates are reported as well as severe adverse events.

ACCOG trial
The Anglo-Celtic Cooperative Oncology Group (ACCOG) study enrolled 363 patients from 25 centres in the UK, Ireland and Belgium. Patients with large (≥3cm), locally advanced or inflammatory breast cancer were included: 77% were considered operable, 8% had LABC and 15% had inflammatory breast cancer. Patients were randomised to either doxorubicin (60mg/m²) and cyclophosphamide (600mg/m²) or doxorubicin (50mg/m²) and docetaxel (75mg/m²). The chemotherapy regimens were given every three weeks. Response rates, relapse and survival were reported, as well as grade III/IV toxicity.

Aberdeen trial
Patients presenting to the Aberdeen Breast Centre, UK, with newly diagnosed large (≥3cm) or LABC (T3-4, N2) were enrolled in this study from July 1996 to March 1999. This trial had a unique study design. All patients were first given four cycles of cyclophosphamide (1000mg/m²), vincristine (1.5mg/m²), doxorubicin (50mg/m²) and prednisolone (40mg) (CVAPr) and those with a positive response (n=104) were then randomised to either a further four cycles of CVAPr (n=52) or four cycles of docetaxel (100mg/m²) (n=52). Those who did not respond to the initial treatment were automatically allocated to further treatment with docetaxel. Only results from the randomised arms are reported here. Fifty patients from the CVAPr arm, and 47 from the docetaxel arm completed the further four cycles of chemotherapy and underwent surgery. Study
arms were relatively well matched by TNM classification, with over 80% patients classified with either T2-3 or N0-1 disease. Response rates and toxicity were reported.

Outcomes
Outcomes have been summarised and tabulated according to how they have been reported in the trials.

Overall survival
OS has been reported in four trials (see Table 3). Three trials reported that overall survival did not differ significantly between treatment groups.3, 5, 6, 10 The Aberdeen trial10 reports that overall survival for the taxane group was 93% compared to 78% for the control group (p=0.04). However, as this trial contains relatively small numbers of participants, caution should be used when interpreting these results. The largest trial, NSABP B-27, reported 156 and 157 deaths in the taxane and control arms respectively (HR: 0.97; p=0.82).5

Disease-free survival
DFS was reported in three trials.2, 3, 5 The overall differences between the taxane and control arms were not considered statistically significant. Median follow-up ranged from 18 to 78 months.

For the NSABP trial,5 events included in calculating the DFS include all recurrences (local, regional or distant), all clinically inoperable and residual disease at surgery, all second cancers and contralateral breast cancer and all deaths. The NSABP B-27 trial reported that there was no statistically significant difference in DFS overall between the neoadjuvant taxane and control arms (HR: 0.90; 95% CI: 0.76, 1.06; p=0.22).5 However, this trial reported that in the subset of patients who had a partial clinical response to AC, a statistically significant increase in DFS was observed in patients given the additional neoadjuvant docetaxel compared to AC alone (HR: 0.71; 95% CI: 0.55, 0.91; p=0.007).5

The Dieras trial5 calculated DFS from the day of random assignment until the date of first relapse or death (regardless of cause). At 18 months, DFS was 87% in the taxane group and 79% in the control group. It was noted at a median follow-up of 31 months that DFS was higher for patients with a complete pathological response, compared to those who did not have pCR (92% vs 69%).

DFS for the MDACC trial was estimated by the Kaplan-Meier method. At 2 years the DFS rates were 94% in the taxane arm compared to 89% for the control arm (p=0.44).2
Relapse-free survival

Relapse-free survival was reported in four trials (see Table 3). Trends suggest that taxanes may be associated with improved relapse-free survival. However, in each trial this was not statistically significant. NSABP B-27 reported 231 events in the taxane arm compared to 258 events in the control arm (HR: 0.85; 95% CI: 0.71, 1.02; p=0.08). The ACCOG trial reported 45 events (24.6%) in the taxane arm compared to 55 events (30.6%) in the control arm and this difference was not statistically significant (p=0.20).

Table 3. Relapses and deaths at most recent report

<table>
<thead>
<tr>
<th>Trial</th>
<th>N</th>
<th>Median follow-up (months)</th>
<th>Relapses</th>
<th>p-value</th>
<th>Deaths</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Taxane</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n(%)</td>
<td>n(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSABP B-27</td>
<td>2353</td>
<td>77.9</td>
<td>258</td>
<td>231</td>
<td>0.08</td>
<td>157</td>
</tr>
<tr>
<td>MDACC</td>
<td>174</td>
<td>23</td>
<td>10</td>
<td>7</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Dieras</td>
<td>200</td>
<td>29.7 ctrl 31.3 txne</td>
<td>14 (21)</td>
<td>28 (21)</td>
<td>NR</td>
<td>6 (9)</td>
</tr>
<tr>
<td>ACCOG</td>
<td>363</td>
<td>32</td>
<td>55 (30.6)</td>
<td>45 (24.6)</td>
<td>0.20</td>
<td>28 (16)</td>
</tr>
<tr>
<td>Aberdeen</td>
<td>97</td>
<td>65</td>
<td>NR</td>
<td>NR</td>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>

Notes: ctrl=control, NR=not reported, txne=taxane

Response rates

Response rates were classified differently by each trial, especially clinical response. Clinical complete response was often classified as the clinical absence of primary tumour (and node involvement). A clinical partial response was often defined as ≥50% reduction of primary tumour. Some trials reported on all levels of response (complete, partial, minor, stable, progression), whereas others reported clinical positive response rates (combined, complete and partial response rates). Complete response rates (pathological and clinical) and clinical positive response rates are reported in Table 4.

Clinical response

Taxane-containing regimens obtained higher clinical complete response rates (cCR); however, differences between arms were not always statistically significant. cCR ranged from 3% to 64% in the taxane containing arms and 0% to 40% in the control arms.

Rates of overall clinical positive response (complete + partial) was higher in taxane-containing arms (range: 70% to 85%) than in control arms (range: 55% to 64%). Some trials provided more detail on clinical response, reporting complete response, partial response, minor response, stable disease, and progressive disease (see Table 5).
Table 4. Overview of response rates (clinical and pathological)

<table>
<thead>
<tr>
<th>Trial</th>
<th>Complete</th>
<th>Partial</th>
<th>Minor</th>
<th>Stable disease</th>
<th>Progressive disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSABP 27</td>
<td>40.1 (n=11)</td>
<td>63.6 (n=27)</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDACC</td>
<td>24 (n=2)</td>
<td>27 (n=3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieras</td>
<td>5 (n=7)</td>
<td>20 (n=15)</td>
<td>4 (6)</td>
<td>11 (8)</td>
<td></td>
</tr>
<tr>
<td>Learn</td>
<td>53 (n=17)</td>
<td>37 (n=55)</td>
<td>20 (n=21)</td>
<td>11 (n=24)</td>
<td></td>
</tr>
<tr>
<td>Malamos</td>
<td>0 (n=3)</td>
<td>5 (n=31)</td>
<td>0 (4)</td>
<td>24 (n=25)</td>
<td></td>
</tr>
<tr>
<td>Lee</td>
<td>1 (n=3)</td>
<td>1 (n=1)</td>
<td>6.3 (n=15)</td>
<td>15 (n=20)</td>
<td>0.39</td>
</tr>
<tr>
<td>ACCOG</td>
<td>30 (17)</td>
<td>37 (20)</td>
<td>110 (61)</td>
<td>129 (70)</td>
<td>0.06</td>
</tr>
<tr>
<td>Aberdeen</td>
<td>17 (n=33)</td>
<td>29 (n=56)</td>
<td>33 (n=64)</td>
<td>44 (n=85)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Notes: cPOS=clinical positive response (complete + partial)

Table 5. Breakdown of clinical response rates

<table>
<thead>
<tr>
<th>Trial</th>
<th>Complete</th>
<th>Partial</th>
<th>Minor</th>
<th>Stable disease</th>
<th>Progressive disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDACC</td>
<td>24 (n=24)</td>
<td>55 (n=27)</td>
<td>13 (n=3)</td>
<td>14 (n=11)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Dieras</td>
<td>5 (n=7)</td>
<td>20 (n=15)</td>
<td>98 (n=74)</td>
<td>NR</td>
<td>14 (n=20)</td>
</tr>
<tr>
<td>Malamos</td>
<td>0 (n=3)</td>
<td>5 (n=31)</td>
<td>9 (n=56)</td>
<td>NR</td>
<td>5 (n=2)</td>
</tr>
<tr>
<td>Lee</td>
<td>1 (n=1)</td>
<td>23 (n=50)</td>
<td>1 (n=15)</td>
<td>3 (n=15)</td>
<td>3 (n=15)</td>
</tr>
<tr>
<td>Aberdeen</td>
<td>17 (n=33)</td>
<td>29 (n=56)</td>
<td>15 (n=31)</td>
<td>15 (n=29)</td>
<td>3 (n=6)</td>
</tr>
</tbody>
</table>

Notes: Ctrl=control, NR=not reported

Learn et al report the cPOS rates for both HER-2/neu positive and negative tumours were similar for docetaxel containing regimens (78% and 81% respectively, p=0.99), however HER2/neu negative tumours did not respond as well to the doxorubicin and cyclophosphamide regimen compared to HER2/neu positive tumours (51% and 75% respectively, p=0.06).7

Pathological response

Pathological complete response (pCR) rates were higher in taxane-containing arms (range: 8% to 31%) compared to control arms (range: 0% to 21%) (see Table 4). However, the NSABP B-27 trial was the only trial to report that the higher pCR rates observed in the taxane arm were statistically significant (26% vs 14%, p<0.001).11 Rates in the Aberdeen trial approached statistical significance (31% vs 15%, p=0.06).10
Breast conserving therapy

Rates of BCT were reported in five trials (see Table 6). Rates of BCT were higher in trials including only operable patients (range: 35% to 64%) compared to rates reported in the ACCOG trial\(^6\) (20%) which included inflammatory and LABC patients. Three trials reported similar rates between taxane arms and control arms.\(^2,6,11\) Two trials reported higher rates of BCT in taxane arms, however statistical significance was not reported.\(^3,8\)

<table>
<thead>
<tr>
<th>Trial</th>
<th>Study arms</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control n(%)</td>
<td>Taxane n(%)</td>
</tr>
<tr>
<td>NSABP B-27(^11)</td>
<td>(61.6)</td>
<td>(63.7)</td>
</tr>
<tr>
<td>MDACC(^*)</td>
<td>(35)</td>
<td>(46)</td>
</tr>
<tr>
<td>Dieras(^3)</td>
<td>30 (45)</td>
<td>77 (58)</td>
</tr>
<tr>
<td>Lee(^8)</td>
<td>(56.2)</td>
<td>(63.6)</td>
</tr>
<tr>
<td>ACCOG(^6)</td>
<td>36 (20)</td>
<td>37 (20)</td>
</tr>
</tbody>
</table>

Toxicity/adverse events

Toxicity data were reported in six of the eight trials. Each trial provided varying amounts of information regarding the toxic effects of the neoadjuvant chemotherapy regimens used. Here we describe the most commonly reported toxic events (Table 7). The NSABP B-27 trial reported combined toxicity data from the neoadjuvant and adjuvant taxane arms of the study which could not be separated.\(^11\) This data has still been included as it is unlikely that the toxicity profile of taxanes differs significantly when given in the neoadjuvant or adjuvant setting. The Aberdeen trial reported limited toxicity results and is not listed in the table.\(^9\) Malamos et al\(^4\) reported no major toxicities had been observed; however, two patients in the PE arm developed liver metastases and one patient in the FEC arm had developed bone metastases. The trials did not perform tests for statistical significance in relation to toxic events. Many of the trials reported small numbers of toxic events, so it is difficult to clearly identify differences in the toxicity profiles of taxane-containing regimens compared to the control regimens.

Toxicities reported more often in taxane-containing regimens

Taxane arms were associated with higher rates of febrile neutropenia, with approximately three times as many occurrences compared to the control arm. Severe infection appeared to be higher in taxane arms. Neurotoxicity was defined differently between trials, often neurosensory and neuromotor effects reported separately. Overall neurotoxicity appeared to be reported more often in taxane-containing arms than in control arms; however, these events were reported in small numbers. Grade III/IV stomatitis, myalgia and arthralgia also appeared to be higher in the taxane arms.
Toxicities reported more often in non-taxane containing regimens

Rates of nausea and vomiting were consistently at least two times higher in the control arms than the taxane arms.2,3,6,11

The Aberdeen trial reported that fewer grade III or IV leukopenic (p=0.001) and granulocytopenic (p<0.001) events were experienced by patients given docetaxel compared to CVAPr in the latter four cycles.9 The NSABP B-27 trial also reported more grade III or IV granulocytopenia in the control arm than the taxane arm (6.3\% vs. 2.3\%).11

Table 7. Reported toxicity data

<table>
<thead>
<tr>
<th>Toxicities</th>
<th>Study arm n(%)</th>
<th>Trials</th>
<th>NSABP B-2711*</th>
<th>MDACCc</th>
<th>Dierasd</th>
<th>Leee</th>
<th>ACCOG**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrile neutropenia</td>
<td>Control</td>
<td>176 (7.3)</td>
<td>(21)</td>
<td>0</td>
<td>23 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taxane</td>
<td>336 (21.2)</td>
<td>(53)</td>
<td>15 (11)</td>
<td>63 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutropenia – grade III or IV</td>
<td>Control</td>
<td>51 (76)</td>
<td>(94)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taxane</td>
<td>127 (96)</td>
<td>(77)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea – grade III or IV</td>
<td>Control</td>
<td>(4.2)</td>
<td>(21)</td>
<td>7 (10)</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taxane</td>
<td>(1)</td>
<td>(10)</td>
<td>4 (3)</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vomiting – grade III or IV</td>
<td>Control</td>
<td>(4.2)</td>
<td>(7)</td>
<td>8 (11)</td>
<td>(3)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taxane</td>
<td>(0.9)</td>
<td>(2)</td>
<td>4 (3)</td>
<td>NR</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Infection – severe or grade III or IV</td>
<td>Control</td>
<td>(2.2)</td>
<td>(5)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taxane</td>
<td>(6.9)</td>
<td>(9)</td>
<td>3 (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stomatitis – grade III or IV</td>
<td>Control</td>
<td>(1.3)</td>
<td>(16)</td>
<td>0</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taxane</td>
<td>(2.6)</td>
<td>(13)</td>
<td>5 (4)</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myalgia – grade III</td>
<td>Control</td>
<td>(5)</td>
<td>(1)</td>
<td>1 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taxane</td>
<td>(25)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthralgia – grade III</td>
<td>Control</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taxane</td>
<td>5 (4)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhoea – grade III or IV</td>
<td>Control</td>
<td>10 (0.4)</td>
<td>(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taxane</td>
<td>10 (0.6)</td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiotoxicity</td>
<td>Control</td>
<td>(6)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taxane</td>
<td>(2)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurotoxicity</td>
<td>Control</td>
<td>(1)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taxane</td>
<td>(5)</td>
<td>2 (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: *Toxicity data from NSABP trial combined results from neoadjuvant and adjuvant taxane study arms.

** Toxicity data from ACCOG trial results based on number of cycles of chemotherapy (control arm n=991 cycles, taxane arm n=1001 cycles)

Other toxicities

Cardiotoxicity was not reported consistently between trials. However, it appears that neither the taxane-containing regimens nor the standard chemotherapy caused many significant cardiovascular events.
The NSABP trial reported slightly more second cancers in the neoadjuvant taxane group compared to the control group (3.7% vs 2.1%).

Many studies reported that there were no deaths caused by treatment in either treatment arm. The NSABP trial reported 7 deaths (0.4%) on the taxane arm which may have been caused by treatment compared to 3 (0.1%) in the control arm.

Quality of life
Quality of life data has not been reported in any of the trials.

ONGOING STUDIES
The following clinical trials websites were searched to identify any additional studies which have not yet reported.

- Australian Clinical Trials Registry (ACTR) http://www.actr.org.au/
- Clinical Trials.gov http://www.clinicaltrials.gov/
- Current Controlled Trials http://www.controlled-trials.com/
- National Research Register http://www.nrr.nhs.uk/
- National Cancer Institute http://www.cancer.gov/clinicaltrials

Two studies were identified, both of which are currently recruiting study participants (see Table 8). The first trial plans to investigate the use of docetaxel compared to FEC (administered differently in each participating centre). The second trial is investigating the question of docetaxel given in sequence to AC or in combination.
<table>
<thead>
<tr>
<th>Title</th>
<th>Location/s</th>
<th>Objectives</th>
<th>Treatment</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination chemotherapy followed by radiation therapy with or without surgery in treating women with locally advanced or inflammatory breast cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00017095/EORTC-10994/ BIG 00-01[17]</td>
<td>International - Europe</td>
<td>To compare treatment arms and measure progression free survival</td>
<td>Arm I: • FEC 100: FEC received IV on day 1, then every three weeks for 6 courses • Canadian FEC: C received orally, E and F via IV, days 1 and 8, every 4 weeks for 6 courses • Tailored FEC: FEC IV day 1, G-CSF days 2-15, every 3 weeks for 6 courses Arm II: D on days 1, 22, 43, E and D on days 64, 85, 106</td>
<td>N=1850 • Females <70 years • Locally advanced/inflammatory or large operable breast cancer • No prior chemotherapy or radiotherapy</td>
</tr>
</tbody>
</table>

Sequential vs upfront intensified neoadjuvant chemotherapy in patients with large resectable or locally advanced breast cancer

| NCT00314977/ INTENS/IKO 2005-01/BOOG 2007-02[18] | Netherlands | To assess whether AC → T or upfront TAC results in better pathological complete response rate To explore dose-intensity, tolerability, the value of MRI in assessing response to treatment To compare disease free survival and overall survival rates | Arm I: AC → D Arm II: DAC | N=200 • Females 18–60 years • Large resectable or locally advanced breast cancer • No prior surgery, radiotherapy or chemotherapy • No history of breast cancer or other malignancy |

Notes: A=doxorubicin, C=cyclophosphamide, D=docetaxel, E=epirubicin, F=fluorouracil, G-CSF=filgrastim
CONCLUSIONS

There does not appear to be an overall survival or disease free survival benefit of taxane-containing regimens compared to standard neoadjuvant chemotherapy for early breast cancer. There is a trend towards a benefit of taxane-containing regimens on relapse-free survival; however, further data is needed to determine if this is statistically significant. Taxane-containing regimens appear to achieve higher clinical and pathological response rates compared to non-taxane-containing regimens; however, the reported differences were only statistically significant in the NSABP B-27 trial. BCT is performed at least as often, after taxane-containing neoadjuvant chemotherapy is given compared to standard neoadjuvant chemotherapy. Patient preferences will influence the decision to have breast cancer therapy performed.

Toxicity data is reported differently between trials. Febrile neutropenia was reported most consistently between trials with higher rates reported in the taxane-containing arms compared to the control arms. Grade III or IV stomatitis, myalgia, and arthralgia appear to be more common in taxane-containing arms. Grade III or IV nausea, vomiting and granulocytopenia appear to be more common in non-taxane-containing arms. For some of these outcomes the number of events are small and not commonly reported between trials, and therefore it is difficult to determine whether the toxicity profiles differ between the taxane- and non-taxane-containing regimens.
REFERENCES

APPENDICES

Appendix 1: Database search results

<table>
<thead>
<tr>
<th>Source</th>
<th>Results/Retrievals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medline (Ovid)</td>
<td>106</td>
</tr>
<tr>
<td>CINAHL (Ovid)</td>
<td>11</td>
</tr>
<tr>
<td>EBM Reviews (Ovid)</td>
<td>60</td>
</tr>
<tr>
<td>Embase</td>
<td>296</td>
</tr>
<tr>
<td>Pubmed</td>
<td>158</td>
</tr>
<tr>
<td>Additional Papers (sourced from reference lists and conference sites)</td>
<td>5</td>
</tr>
</tbody>
</table>

Appendix 2: Search terms used in search strategies

<table>
<thead>
<tr>
<th>Key areas</th>
<th>Search Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast Cancer</td>
<td>("breast neoplasms/" or “breast cancer” or “breast carcinoma” or (breast adj5 cancer))</td>
</tr>
<tr>
<td>Neoadjuvant chemotherapy</td>
<td>("induction chemotherapy" or “primary chemotherapy” or “preoperative chemotherapy” or “pre-operative chemotherapy” or “neoadjuvant chemotherapy” or “neo-adjuvant chemotherapy” or “neoadjuvant therapy/” or “neoadjuvant therapy” or “neo-adjuvant therapy” or ((neoadj$ or neo-adj$ and chemotherapy))</td>
</tr>
<tr>
<td>Taxanes</td>
<td>(taxioids/ or taxane$ or paclitaxel/ or paclitaxel or taxol or docetaxel or taxotere)</td>
</tr>
<tr>
<td>Randomized trials</td>
<td>("randomized controlled trial" or “randomized controlled trials” or “randomised controlled trial$” or “random$" or “random allocation” or “controlled clinical trial” or “double blind method” or “single blind method” or “meta-analysis" or “meta-analysis" or “meta analysis”)</td>
</tr>
</tbody>
</table>

Notes: * / indicates Mesh terms, $ indicates truncated terms and adj5 indicates Boolean terms
Appendix 3: Flowchart of Inclusion/Exclusion process

1. 427 articles identified

2. 373 ineligible - excluded based on title/abstract

3. 54 articles retrieved for full text assessment

4. 34 ineligible - excluded based on full text

5. 20 eligible articles
Appendix 4: Sites searched

<table>
<thead>
<tr>
<th>Country</th>
<th>Acronym</th>
<th>Organisation</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>ACTR</td>
<td>Australian Clinical Trials Registry</td>
<td>http://www.actr.org.au/</td>
</tr>
<tr>
<td></td>
<td>ANZBCTG</td>
<td>Australian New Zealand Breast Cancer Trials Group</td>
<td>http://www.anzbctg.org/</td>
</tr>
<tr>
<td>Canada</td>
<td>CCO</td>
<td>Cancer Care Ontario</td>
<td>http://www.cancercare.on.ca/</td>
</tr>
<tr>
<td>International</td>
<td>HTAi</td>
<td>Health Technology Assessment International</td>
<td>http://www.htai.org/</td>
</tr>
<tr>
<td>Scotland</td>
<td>SIGN</td>
<td>Scottish Intercollegiate Guidelines Network</td>
<td>http://www.sign.ac.uk/</td>
</tr>
<tr>
<td>UK</td>
<td>CRD</td>
<td>Centre for Reviews and Dissemination</td>
<td>http://www.york.ac.uk/inst/crd/</td>
</tr>
<tr>
<td></td>
<td>CCT</td>
<td>Current Controlled Trials</td>
<td>http://www.controlled-trials.com/</td>
</tr>
<tr>
<td></td>
<td>NICE</td>
<td>National Institute for Health and Clinical Excellence</td>
<td>http://www.nice.org.uk/</td>
</tr>
<tr>
<td></td>
<td>NRR</td>
<td>National Research Register</td>
<td>http://www.nrr.nhs.uk/</td>
</tr>
<tr>
<td>US</td>
<td>ClinicalTrials.gov</td>
<td></td>
<td>http://www.clinicaltrials.gov/</td>
</tr>
<tr>
<td></td>
<td>NCI</td>
<td>National Cancer Institute Clinical Trials</td>
<td>http://www.cancer.gov/clinicaltrials</td>
</tr>
<tr>
<td></td>
<td>NGC</td>
<td>National Guideline Clearinghouse</td>
<td>http://www.guideline.gov/</td>
</tr>
</tbody>
</table>